## Reactor Period

Reactivity is not directly measurable and therefore most power reactors procedures do not refer to it and most technical specifications do not limit it. Instead, they specify a limiting rate of neutron power rise (measured by excore detectors), commonly called a **reactor period** (especially in case of **BWRs**).

**The reactor period, τ _{e}**, or

**e-folding time**, is defined as the time required for the neutron density to change by a factor e = 2.718. The reactor period is usually expressed in units of seconds or minutes.

At this time:

**where:**

** n(t) = transient reactor power**

** n(0) = initial reactor power**

** τ _{e} = reactor period**

The **smaller** the value of **τ _{e}**, the

**more rapid**the change in reactor power. The reactor period may be positive or negative. If the reactor period is positive, reactor power is increasing. If the reactor period is negative, reactor power is decreasing. If the reactor period is constant with time, as associated with exponential power change, the rate is referred to as a

**stable reactor period**. If the reactor period is not constant but is changing with time, as for non-exponential power change, the period is referred to as a

**transient reactor period**.

Derivation of the formula **τ _{e}** =

**l**is based on many assumptions and it is only

_{d}/ (k-1)**simplest approximation**of the reactor period. A much more exact formula reactor period is based on solutions of

**six-group point kinetics equations**. From these equation an equation called the

**inhour equation**(which comes from inverse hour, when it was used as a unit of reactivity that corresponded to e-fold neutron density change during one hour) may be derived.

where:

**l** = prompt neutron lifetime

**β _{eff} **= effective delayed neutron fraction

**λ**= effective delayed neutron precursor decay constant

_{eff}**τ**= reactor period

_{e}**ρ**= reactivity

The first term in this formula is the **prompt term** and it causes that the

positive reactivity insertion is followed immediately by a immediate power increase called the **prompt jump**. This power increase occurs because the rate of production of prompt neutrons

changes immediately as the reactivity is inserted. After the **prompt jump**, the rate of change of power cannot increase any more rapidly than the built-in time delay the precursor half-lives allow. Therefore the **second term** in this formula is called the **delayed term**. The presence of delayed neutrons causes the power rise to be controllable and the reactor can be controlled by control rods or another reactivity control mechanism.

The relationship between **reactor period** and **startup rate** is given by following equations:

Example:

Suppose **k _{eff} = 1.0005** in a reactor with a generation time

**l**. For this state calculate the reactor period –

_{d}= 0.01s**τ**, doubling time –

_{e}**DT**and the startup rate (

**SUR**).

ρ = 1.0005 – 1 / 1.0005 = **50 pcm**

τ_{e} = l_{d} / k-1 = 0.1 / 0.0005 = **200 s**

DT = τ_{e} . ln2 = **139 s**

SUR = 26.06 / 200 = **0.13 dpm**

We hope, this article, **Reactor Period**, helps you. If so, **give us a like** in the sidebar. Main purpose of this website is to help the public to learn some interesting and important information about physics and reactor physics.